Fore Stry An International Journal (y" Forest Research

= = |nstitute of
~—

Chartered Foresters

Forestry 2022; 95, 698-710, https://doi.org/10.1093/forestry/cpac023

Advance Access publication 2 July 2022

Mapping wheel-ruts from timber harvesting operations using deep
learning techniques in drone imagery

Saheba Bhatnagar?, Stefano Puliti', Bruce Talbot?, Joachim Bernd Heppelmann?, Johannes Breidenbach®* and
Rasmus Astrup!

IDivision of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research, Hegskoleveien 8, As 1431, Norway
2Department of Forest and Wood Science, Stellenbosch University, Matieland, 7602, Stellenbosch 7599, South Africa

*Corresponding author Tel: +47 974 77 985; E-mail: johannes.breidenbach@nibio.no

Received 2 December 2021

Wheel ruts, i.e. soil deformations caused by harvesting machines, are considered a negative environmental
impact of forest operations and should be avoided or ameliorated. However, the mapping of wheel ruts that
would be required to monitor harvesting operations and to plan amelioration measures is a tedious and time-
consuming task. Here, we examined whether a combination of drone imagery and algorithms from the field of
artificial intelligence can automate the mapping of wheel ruts. We used a deep-learning image-segmentation
method (ResNet50 + UNet architecture) that was trained on drone imagery acquired shortly after harvests in
Norway, where more than 160 km of wheel ruts were manually digitized. The cross-validation of the model
based on 20 harvested sites resulted in F1 scores of 0.69-0.84 with an average of 0.77, and in total, 79 per cent
of wheel ruts were correctly detected. The highest accuracy was obtained for severe wheel ruts (average user’s
accuracy (UA) =76 per cent), and the lowest accuracy was obtained for light wheel ruts (average UA=67 per
cent). Considering the nowadays ubiquitous availability of drones, the approach presented in our study has the
potential to greatly increase the ability to effectively map and monitor the environmental impact of final felling
operations with respect to wheel ruts. The automated mapping of wheel ruts may serve as an important input

to soil impact analyses and thereby support measures to restore soil damages.

Introduction

Mechanized harvesting of forests is an integral part of sustain-
able forest management and is required to supply society with
the required timber through efficient and safe forest operations.
However, mechanized harvesting operations can cause consid-
erable environmental impacts. Besides the inevitable but tempo-
rary loss of habitat for forest-dwelling animals and plant species,
harvesting operations can also result in soil damage (Ampoorter
et al., 2010). Wheel ruts are a form of soil displacement caused
by wheels or crawler tracks of forest machines that compress
and shear upper soil layers (Heppelmann et al., 2022). Despite
considerable technological developments to reduce the impact
on soils, wheel ruts can occur when forest operations are con-
ducted under suitably low to moderate soil moisture or non-
frozen conditions (Uusitalo et al., 2015). The porosity of soils
affected by wheel ruts may be reduced, resulting in anaerobic
processes and reducing the stability and growth of future forests
(Cambi et al., 2015). Therefore, wheel ruts should be avoided as
far as possible, and forest certification schemes and regulations
include thresholds for acceptable levels of wheel rutting. Hence,
it is important to have efficient ways to monitor the amounts of
wheel rutting following harvests.

Because of the large areas involved, rugged terrain and pres-
ence of harvest residues, it is challenging to map wheel ruts in the
field, and the use of remotely sensed data may present a feasible
alternative (Talbot and Astrup, 2021). Drones or unmanned aerial
vehicles (UAVs) have become popular for capturing images in
many forest-related applications (Puliti et al. 2015, Banu et al.,
2016, Iglhaut et al,, 2019, Kentsch et al.,, 2020). In the field of
forest operations, drone images and derived 3D products provide
a valuable source of information to assess the environmental
performance of the harvesting operation (Nevalainen et al., 2017,
Talbot and Astrup, 2021). In particular, drones have been used to
measure wheel rut depth (Pierzchata et al., 2014, 2016; Haas et
al., 2016; Talbot et al., 2018; Marra et al., 2021). These studies
provided insights into the obtainable accuracy of rut depth mea-
surements from drone imagery but required manual intervention
to identify the trail network or localize specific measurement
points or profiles for further analysis.

The studies mentioned so far have combined 3D elevation
information obtained with photogrammetric approaches and
colour images to detect the wheel rut type. However, the
production of detailed 3D models is time-consuming and
resource-intensive and complicates the prediction process
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because it depends on a separate photogrammetric processing
chain. Hence, such approaches have limited potential for real-
time monitoring capabilities of drones in which wheel ruts would
be automatically spotted while the drone is flying.

A more widespread operational deployment of drone based
post-harvest assessment would require the partial or full
automation of wheel rut detection and measurement (Talbot
and Astrup, 2021). Established machine learning models such
as support vector machines (Boser et al., 1992) and random
forest (Breiman, 2001) typically operate on pixel level and hence,
mostly depend on the pixels’ spectral information. This makes
it challenging to transfer a trained classifier successfully to a
new scene since the spectral information may be influenced
heavily by illumination conditions during the drone flight. Adding
texture metrics and applying spectral normalization algorithms
can partly help to address these problems, but it is unlikely
that these steps will fully resolve the related issues. On the
other hand, certain deep learning (DL) algorithms, such as
convolutional neural networks (CNNs) mostly rely on textural
information and are hence less dependent on an accurate
and comparable spectral signal at the pixel level. DL models
automatically learn the features from the data (lazy learning),
enabling broad application automation and often outperforming
traditional algorithms (Zou et al., 2015; Kattenborn et al., 2019;
Wurm et al., 2019; Bhatnagar et al., 2020). The application
fields for DL have recently increased drastically, partly due
to the increasing availability of sophisticated DL libraries and
complementary hardware to process the data. For the extraction
of pattern-related information in remote sensing imagery,
CNNs have become a popular choice (Ma et al.,, 2019). CNNs
are utilized mainly for classification in the form of image
classification, semantic segmentation, object detection and
instance segmentation (Kattenborn et al., 2021). In the case
of image classification, the output of the CNN is a 1D vector
defining the probability of the image belonging to a particular
label. Whereas in semantic segmentation, every pixel is labelled,
i.e. the output is not a 1D probability but a 2D score map, similar
to a probability map for each pixel that enables to produce a
segmentation map of the same size. Object detection is mainly
used to locate individual occurrences of an object within the
image, and instance segmentation is a combination of object
detection and semantic segmentation (Kattenborn et al., 2021).
CNNs consist of several layers, including convolutional layers,
which are the main building blocks of CNNs containing a set of
filters for feature extraction (Mostafa and Wu, 2021); nonlinearity
layers which increase the nonlinear representation ability of the
convolutional layers (Yuan et al., 2020); pooling layers that down-
sample by keeping the most important information (Albawi et al.,
2017); and fully connected layers which define the relationship
between the extracted features and the output (Yuan et al.,
2020). In semantic segmentation, some fully connected layers
are replaced by fully convolutional layers. More about the
functionalities of CNNs can be found, for example, in Albawi et
al. (2017), Bhatnagar et al. (2020) and Kattenborn et al. (2021).
There are several new and off-the-shelf architectures available,
which have already been successfully applied in remote sensing
for image classification (Hoeser and Kuenzer, 2020; Kattenborn
etal, 2021).

While we are not aware of studies on the automated detec-
tion of wheel ruts using DL or ML, CNNs have been applied for
somewhat related objectives in an urban context (Audebert et
al., 2018) to, for example, identify roads (Bayoudh et al., 2021),
cracks in surfaces (Ali et al., 2021; Kim et al., 2021) and pave-
ments (Ma et al.,, 2021), and railway tracks (Giben et al., 2015).
In an agricultural context, Paul et al. (2021) used LIiDAR data
in combination with CNN to detect drainage ditches in Sweden.
In addition, studies like Kanakaraddi et al. (2021) and Patil and
Jadhav (2021) have depicted the usage of CNNs to detect roads
using satellite imagery. Zhang et al. (2018) describe the benefit of
combining ResNet with UNet to extract roads from aerial images.
All of these studies indicate that the automatic detection of linear
but somewhat fuzzy features seems to be possible with CNN.

This study aims to examine whether the automated detection
of wheel ruts caused by cut-to-length harvester and forwarder
systems can be realized with a combination of drone RGB images
of previously tree-covered sites acquired shortly after final har-
vests and CNNs. We use the CNN models to separate wheel ruts
and unaffected areas in a binary classifier. We cross-validate our
results using 20 independent harvested sites with areas between
0.5 and 21.5 ha in south-eastern Norway.

Material and methods

The processing workflow (Figure 1) consisted of five steps (1)
Capturing the drone imagery; (2) Manual annotation of wheel
ruts in the drone images as polyline vectors; (3) Pre-processing,
which includes rasterization of the wheel rut vectors into the
two classes wheel rut or unaffected area and splitting the drone
imagery for feeding into the DL system; (4) Semantic segmenta-
tion to detect wheel and unaffected areas in all images per site;
(5) Post-processing of the prediction maps, including mosaick-
ing and applying morphological operations. Steps 4 and 5 were
repeated for all sites in a k-fold (k =4) cross-validation.

Study sites and drone data

A total of 20 study sites were surveyed with a drone after clear-
cutting (Figure 2). The flights were conducted over a span of 4
years (2016-2019) as part of a long-term effort to monitor the
environmental performance of modern harvesting practices. A
full description of the manually annotated data is provided by
Heppelmann et al. (2022). All sites were productive forest areas
in south-eastern Norway.

The drone data acquisitions varied with respect to several
parameters, including the camera used for the image acquisition,
flight altitude, season, date and time of the day (Table 1). The
sites captured in the initial part of the acquisition period were
accomplished using a DJI Phantom 2 drone fitted with a GoPro™
Hero 4 12 mega-pixel camera (p2GoPro) (DJI 2013), which was
later replaced with a DJI Phantom 4 Pro drone, with DJI’s fac-
tory fitted 20 mega-pixel camera (p4pro) (DJI 2020). Survey
flights with given altitudes and overlap were conducted using
DJI’s Ground Station Pro software in most cases, although UgCS
software (www.ugcs.com) was used on steeper sites to reduce
variation in ground sampling distance (GSD) within the same
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Figure 1 Methodology flowchart for detecting wheel ruts using drone imagery.

acquisition. For the lower resolution p2GoPro, a flight altitude of
~50 m above the ground was targeted, while this was increased
to between 60 and 100 m on the p4pro, both depending on ter-
rain and obstacles. A forward overlap of 80 per cent and a lateral
overlap of 70 per cent was targeted in the flight plan. On each
site, 5-7 ground control points (GCPs) were installed before image

capturing. The GCP position was recorded at centimetre accuracy
using a TopCon GR-5 real-time kinematic (RTK) GNSS with live
correction via the GSM network. Agisoft Photoscan (Agisoft, 2022)
was used to generate an orthomosaic for each site that was
used for the manual annotation of wheel ruts (next section)
and DL.
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Figure 2 (a) Location of the harvested sites in Norway, (b) drone-image orthomosaic, (c) manually annotated wheel rut coloured by their severity

(L=light, M=medium, S=severe) overlaid the orthomosaic.

Data annotation

The orthomosaics for all 20 sites were manually annotated in a
GIS environment to register the location and severity of wheel
ruts (Figure 1, step 2), as described in detail by Heppelmann et al.
(2022). The annotation was carried out using visual interpretation
of the drone imagery without additional field visits. Due to the
removal of most trees during the harvesting operations (i.e. clear
cut), the wheel ruts were clearly visible in the RGB orthomosaics.
They were digitized as lines in the centre of the two parallel wheel
ruts, which were further classified into the following three severity
classes (Figures 2 and 6).

® Light: visible wheel ruts with no identifiable soil displacement
or rut-formation; 63.6 per cent of the total annotated wheel
ruts were light.

® Moderate: showed rutting with minor soil displacement and
deeper indentations but no visible loss of water drainage func-
tions; 24.6 per cent of the total annotated wheel ruts were
moderate.

® Severe: all wheel ruts with either substantial soil displacement,
deep indentations, loss of water drainage functions, or a com-
bination of various of these factors; 11.8 per cent of the total
annotated wheel ruts were severe.

Preparation of the annotated data for deep learning

The detection of wheel ruts is prerequisite for determining their
severity in a more in-depth analysis, concentrated to a smaller
area. Therefore, we segmented wheel ruts and unaffected areas
as a binary class independent of the wheel-rut severity category
(Figure 1, step 3). The input reference observation for modelling
was thus a binary annotated image with wheel ruts as one class
and unaffected area as a second class. A visual assessment of
the drone images revealed that, on average, ~1.5 m on both
sides of the centerline of the wheel ruts were affected by the
harvesting operation (Figure 3). The input reference image was
therefore generated by applying a 1.5-m buffer from the centre of
the wheel rut on both sides of the annotated polylines, dissolving
the results and converting the resulting polygon into a binary
raster with a value of one in correspondence to wheel ruts and
zero to the unaffected area (Figure 3b-d). Additionally, any non-
forest area was masked out.

There are two types of image splitting that can happen based
on either image size (pixels) or image extend (coverage). The
inputs to the deep learning model are RGB images in portable
network graphics (png) format with an extent of 20 x 20 m.
Therefore, the RGB orthomosaic GeoTIFF raster and the anno-
tated data were split into tiles of 20 x 20 m and converted
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Table 1 Details about the sites under consideration.

Site Approx. location Drone and Spatial Date of acquisition Time of acquisition Area Wheel rut
camera type resolution (cm)  (DD.MM.YYYY) (hh:mm) (ha) length (m/ha)

A 10.69°E, 85.76°N p4pro 3.2 13.07.2019 16:02 0.5 1540
B 13.08°E, 82.53°N p2GoPro 2.0 08.05.2016 13:47 1.2 1698
C 10.92°E, 85.88°N p&pro 33 11.07.2019 18:24 1.4 2092
D 10.93°E, 85.88°N p4pro 3.1 11.07.2019 18:00 1.6 1720
E 12.13°E, 83.16°N p4pro 2.0 11.07.2018 09:11 2.2 1519
F 13.09°E, 82.52°N p2GoPro 2.0 11.05.2016 19:36 2.4 1507
G 11.68°E, 83.18°N p4pro 1.5 08.09.2017 15:00 2.5 1164
H 11.93°E, 83.26°N p2GoPro 1.0 26.05.2016 20:20 2.7 2693
I 11.97°E, 83.28°N p4pro 2.9 27.04.2019 14:06 3.0 1782
J 10.82°E, 86.12°N p4pro 2.7 12.07.2019 19:30 3.4 614
K 11.88°E, 83.02°N p4pro 1.0 18.05.2018 16:43 3.5 1288
L 11.96°E, 83.21°N p4pro 2.0 01.05.2017 18:57 39 1698
M 11.19°E, 83.71°N p4pro 1.0 09.07.2019 12:15 4.3 1579
N 11.98°E, 83.19°N p4pro 7.1 23.04.2017 13:27 4.5 1887
o] 11.93°E, 83.27°N pkpro 2.0 30.08.2016 12:00 6.8 2149
P 10.64°E, 86.36°N p4pro 2.9 12.07.2019 16:37 6.8 2120
Q 11.97°E, 83.19°N p4pro 3.5 01.05.2017 19:07 7.9 1583
R 12.10°E, 82.97°N p2GoPro 1.9 29.05.2016 18:13 9.5 2118
S 12.02°E, 82.90°N p2GoPro 1.4 28.05.2016 18:04 11.0 1436
T 10.48°E, 85.85°N p4pro 2.4 19.05.2018 15:00 215 1141

Drone and camera type: p4pro=DJI Phantom 4 Pro with DJI camera (20 mega-pixel), p2GoPro=DJI Phantom 2 with GoPro™ Hero 4 camera (12

mega-pixel).

to png format. The metadata containing the geotags of the
tiles was stored and used later for mosaicking the prediction
maps. Different sites under consideration had different spatial
resolutions (Table 1), meaning that even though the image tiles
were resampled to a fixed pixel size of 1024 x 1024 pixels when
training the CNN model (see Semantic segmentation using CNN
section), the model was exposed to a variation in GSD.

The orthomosaics of the 20 sites were split into a total of
2597 images with a size of 20 x 20 m. The sites were randomly
divided into four groups for training and testing, i.e. the training
was done using 15 sites, and the model was tested on the rest of
the five sites in a k=4 cross-validation. Group specifications are
as follows:

1. Group1

a. Sites:D, G, K, Q, T
b. Training images=1734; Testing images =863

2. Group 2

a. Sites:B,C, H, N, S
b. Training images=2096; Testing images =501

3. Group 3

a. Sites:A E,F, J,R
b. Training images=2074; Testing images=523

4. Group 4

a. Sites:I,L,M, O, P
b. Training images=1887; Testing images=710

Semantic segmentation using CNN

For semantic segmentation (Figure 1, step 4), the choice of archi-
tecture is generally application-specific, and each architecture
has advantages and disadvantages in accuracy, memory con-
sumption, operation counts, inference time and parameter uti-
lization (Canziani et al., 2016). See Hamedianfar et al. (2022) for
an overview of various deep learning methods used for forestry
applications. Preliminary analysis on a subset of this study’s
data revealed that using a popular machine learning algorithm
(Random Forest), only poor results for detecting wheel ruts could
be obtained (Appendix A1). A brief description along with a com-
parison of several DL methods is provided in Appendix A1, Table 4.
Based on some preliminary analyses in which we examined sev-
eral combinations of network architectures (see Appendix A1),
we found that the combination of ResNet50 and UNet provided
the best accuracy, and we thus selected this combination for
further detailed analysis.

Figure 4 shows the DL architecture used in this study. The
ResNet50 architecture is resilient to overfitting due to its residual
learning concept (Yang et al., 2020), which states that each layer
will feed to the next layer and the activation layer directly (He
et al. 2016). The layers are considered residual blocks to facili-
tate the network’s training (Ardakani et al., 2020). For decoding
the information from ResNet50, the UNet architecture is used
(Ronneberger et al.,, 2015). The UNet retains the spatial infor-
mation while upsampling to circulate context from a lower to
a higher resolution layer (Alam et al, 2021). Due to limited
data availability, a transfer of pre-trained weights from Ima-
geNet (Russakovsky et al., 2015) was applied on ResNet50, while
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|| 1.5m buffer i

(b)

Figure 3 (a) Orthomosaic of study site S; (b) zoomed-in view with manually annotated wheel ruts as polylines; (c) 1.5 m buffer around wheel ruts; (d)

zoomed-in view of wheel rut buffers.

the UNet (decoder) was trained from scratch. Transfer learning
enables the transfer of information of a pre-trained network
(trained on a big dataset, for example, ImageNet) to a new
network which is then fine-tuned for the required application. In
a somewhat simplified language, one could say one uses a pre-
trained network that has already learned ‘how to see’ and then
teaches this network the specific problem it has to solve in the
new images. This step enhances the model’s performance and
makes the convergence faster (Nigam et al., 2018; Kentsch et al.,
2020).

The first part of the ResNet50 workflow is an image prepro-
cessing step, resampling all the input images to 1024 x 1024
pixels, which was the required input matrix size of the model.
This process changes the pixel size of the original images. An
initial test with images consisting of 1024 x 1024 pixels, which
results ininput images of different extent in metres but maintains
the original resolution (i.e. pixel size), was also tried but led
to poor model performance (Appendix A2). Furthermore, image
augmentation (flipping, rotation) was used to increase the num-
ber of input images.

ResNet50 is a deep network having 50 layers, including batch
normalization layers (He et al. 2016). Such layers normalize
the nodes before inputting them into the following activation
function. The architecture uses skip connections to impart
information between the layers. The convolutional layer is a
matrix multiplication over the images using a filter of size 3 x 3
with stride=2 (Figure 4). The activation function (A) is used to
introduce nonlinearity in the input images, which is done to make

the model more expressive and sensitive to distinguish minute
features. The Rectified Linear unit (ReLu) activation function we
used in this study is one of the most used activation functions due
to its high computational effectiveness and computing speed (Lu
et al., 2017; Bircanoglu and Arica, 2018). ReLu removes all the
negative parts from the input (image f), as described in equation
(1).

A(f) = 0;f < 0
Af) =fif >0 )

where A(f) is a picture element of f. Apart from RelLu, for classifi-
cation, a Softmax classifier for calculating probabilities was used
as a top layer for pixel-wise prediction. A pooling layer was used
to extract the most important features (e.g. sharp and smooth
features). Here, we use the max-pooling layer, where only the
local maxima of the region under the filter was carried forward.
Apart from the choice of architecture, the choice of hyper-
parameters also plays a vital role in the performance of the CNN
model. The aim of optimization is to minimize the cross-entropy
loss; this was done using adaptive momentum (ADAM) optimiza-
tion. To ensure augmentation does not change the quality of the
test results, the L2 (or ridge) regularization method was used. An
initial learning rate (the rate at which the model is updated) of
0.01 was selected by the hit and trial method. The batch size was
set to 20. For upsampling, the UNet architecture (Figure 4) was
trained from scratch. UNet uses both transpose convolution and
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Figure 4 ResNet50 + UNet architecture for automatic detection of wheel ruts using drone imagery.

skip connections to sync the feature maps from the encoder and
decoder.

The model was run for 20 epochs for each of the four cross-
validation groups as an initial analysis showed that an increase
in the number of epochs did not markedly improve the precision.
The programming code defining the model is available at Bhat-
nagar et al. (2021) for full transparency. Our implementation is
based on the repository by Divamgupta (2019).

Post-processing

The predictions (binary masks indicating presences and absences
of wheel ruts in each pixel) were further enhanced to locate the
wheel ruts using multiple morphological operations. The noise
elements were removed in the post-processing without distorting
the original results. First, a binary opening was performed (equa-
tion (2)). Opening in mathematical morphology is defined as an
erosion followed by dilation using the same structuring element
(SE) or kernel on the image (f). The aim was to enhance the wheel
rut detection. As a result, spurious regions smaller than ~5 m?
were removed.

Fi=(f © SE1) & SE; (2)

where F; was the opened-binary image, & is erosion and & is
dilation (Serra, 1979). SE; was a circular disc with a radius of 2 m.

Second, grayscale erosion was performed to define the wheel
ruts accurately and remove overestimation along the boundaries
of the segments. This step replaces each pixel with the local
minimum of the defined SE (SE;) around the pixel

F, =F, ©SE, (3)

where F; is the eroded image, and SE, was a circular disc with
a radius of 20 cm that facilitates the erosion operation. For the
example of a drone image with a pixel size of 1 cm, SE; and
SE, were matrices of size 100 x 100 and 10 x 10, respectively.
An example of the post-processing steps is shown in the Results
section (Figure 5).

(d)

Figure 5 Result of the post-processing steps: (a) original wheel rut image,
(b) original prediction map of wheel rut not post-processed, (c) prediction
map after step 1 - area opening, closing to remove islands of pixels,
(d) prediction map after step 2 - the erosion of wheel ruts, final post-
processed result.

Validation

We used fourfold cross-validation, and in each iteration, the
following steps were implemented:

1. Splitting the data into training (number of sites minus 5=15)
and testing data (remaining five sites).

2. Training the model on the training data.

3. Applying the model to the testing site to classify wheel ruts.

4. Computing the confusion matrix (based on pixels) of the man-
ually annotated input images vs the model prediction maps.
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Table 2 Confusion matrix for wheel rut detection overall 20 harvested sites after post-processing.

Reference
Wheel rut Unaffected Total User’s Accuracy F1 score
ared
Prediction Wheel rut 38% 10% 48% 78% 0.77
Unaffected area 11% 41% 52% 81% 0.80
Total 49% 51% 100%
Producer’s accuracy 79% 80% OA=79.5%

All values except for the F1 score are given in percent of the total number of pixels. A confusion matrix with the absolute number of pixels is given in

Appendix A3.

Additionally, testing OA (accuracy of CNN model applied on
the testing data, equation (4)), F1 score (equation (5)), user’s
accuracy (UA) and producer’s accuracy (PA) where calculated
(equations (6) and (7)).

OA = (TP+TN) / (TP + FP+ FN + TN) (4)
F1=2TP/ TP+ FP +FN) (5)
PA =TP/ (TP +FN) (6)
UA = TP/ (TP + FP) 7)

where, TP =true positives, TN = true negatives, FP = false positives,
FN =false negatives. An overall confusion matrix was calculated
by adding the TP, TN, FP and FN pixels from every site. Relative
confusion matrices were calculated by dividing each cell (TP, TN,
FP, FN) by the total number of pixels.

Results

We developed a five-step procedure to detect wheel ruts in
drone images using a CNN model over 20 harvested sites in
Norway. The model was evaluated in a fourfold cross-validation
where the model was fit using 15 sites, while five sites were
available as independent test data. The CNN model resulted in
an average OA over all sites of 77.4 per cent. Post-processing with
morphological operators resulted in the final wheel rut map with
a slightly improved OA of 79.5 per cent (see also Appendix A3).
The improvement by post-processing is visualized for an exam-
ple area in Figure 5. The average F1 score, PA, and UA of the
final wheel rut map were 0.77, 78.9 and 73.5, respectively. The
overall confusion matrix (containing data from all pixels in all of
the 20 sites) is given in Table 2. Confusion matrices for all sites
individually are shown in Appendix A3, and accuracy metrics for
all sites are collectively presented in Table 3, including accuracies
by severity class.

The drone data were collected using two different sensors
(Table 1). However, despite a difference in the training data size
(75 per cent p4pro, 15 per cent p2GoPro) and sensor properties,
there was no notable difference in the accuracy for detecting
wheel ruts for the sites from either sensor. The average OA
for p4pro and p2GoPro were 79.6 per cent and 78.9 per cent,
respectively. The accuracy metrics were also relatively robust,

given other acquisition characteristics such as flying height and
time of flight (Tables 1 and 3).

Examples of wheel rut predictions for each severity class are
shown in Figure 6. Severe wheel ruts were best detected with an
average UA of 76 per cent (range = 65-96 per cent). Moderate and
light wheel ruts were more often confused with the unaffected
area, which resulted in average UAs of 69 per cent (range =52-92
per cent) and 67 per cent (range=55-91 per cent), respectively.
This can also be seen in Figure 6d, where a patch of severe wheel
rut was identified amidst unidentified light wheel ruts. The PA is
not provided for severity classes because predictions were not
made for severity classes, i.e. the omission error represented by
FN is not available in the reference. Site-specific accuracies and
confusion matrices can be found in Appendix A4.

A visual inspection of the wheel rut prediction maps showed
that interferences in the form of residual logs, branches, harvest
residues and shadows could increase the FP leading to over-
estimation of wheel ruts. Figure 7 shows two cases, site O being
one of the sites with the best accuracies (F1 score of 0.84) and
site J with one of the poorest accuracies (F1 score of 0.69). The
reason for the relatively poor model performance of site J was
that 95 per cent of the total wheel ruts were in the light severity
class that is less well detected, and there were no severe wheel
ruts present on this site. Also, it can be seen that a blurred patch
(upper left) is present for site J, which hampers the detection of
light wheel ruts in this part of the image.

Discussion

A comprehensive post-harvest assessment of soil disturbance
for compliance with management objectives is a resource-
demanding exercise, hardly justifiable under current economic or
regulatory conditions. One key-attribute related to soil conditions
after harvesting is wheel ruts since they serve as an indicator of
the intensity of soil disturbance in the area. In this study, we
suggest a drone-based workflow to automatically detect wheel
ruts using CNN. For this, a ResNet50+ UNet architecture was
applied, and the study was verified for 20 sites in Norway.

The testing was done using k=4-fold cross-validation tech-
nique, where all the sites were randomly divided into groups of
five sites. An initial analysis using leave-one-out-cross-validation
was performed, and the results did not differ markedly from k-
fold cross-validation despite a considerably smaller number of
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Table 3 Wheel rut detection accuracy metrics after post-processing based on cross-validated data including wheel rut user’s accuracy given severity

classes.

Site OA (%)  F1lscore-wheelrut PA-wheelrut (%) UA - wheel rut (%) UA - Light (%) UA - Moderate (%) UA - Severe (%)
A 71.2 0.72 85.4 66.0 55.0 55.0 65.0
B 82.7 0.75 86.0 67.0 68.1 58.2 69.3
@ 81.3 0.81 85.6 70.0 58.2 70.0 71.0
D 82.1 0.82 77.0 85.2 85.6 80.5 90.9
E 69.3 0.70 73.4 62.1 61.7 63.1 83.5
F 733 0.74 67.7 76.6 78.4 52.0 73.0
G 80.5 0.70 74.0 66.0 60.2 73.3 75.7
H 78.3 0.81 92.0 723 69.2 78.0 87.3
I 71.2 0.70 60.0 84.0 83.7 86.0 87.6
J 84.9 0.69 68.2 69.0 68.9 56.3 -

K 82.4 0.76 81.3 64.4 66.2 71.8 73.2
L 86.0 0.81 84.8 75.2 74.1 Th4 67.2
M 73.4 0.74 62.5 78.6 62.0 63.0 68.0
N 85.1 0.79 91.4 65.6 54.5 70.2 71.8
0 84.0 0.84 95.0 73.1 69.7 70.1 77.3
P 82.1 0.83 73.2 91.0 90.5 91.5 96.3
Q 75.0 0.79 72.1 74.2 60.0 72.0 74.8
R 76.2 0.80 76.0 79.5 63.0 63.0 69.0
S 84.5 0.81 88.2 68.0 62.0 81.2 77.1
T 86.0 0.83 83.1 82.3 55.6 67.4 67.9

images available for model fitting in the case of k-fold cross-
validation. Therefore, k-fold cross-validation was used given the
computation and time benefits. On average, ~1900 images were
used to train the model, and the testing was done on ~650
images. The results (OA, UA, PA, F1 score) prove that the sug-
gested method enables the transfer of the trained algorithm
to new sites and works well on datasets which were not used
during the training stage. Studies such as Talbot et al. (2018)
and Marra et al. (2021) have used drone imagery for manually
detecting wheel ruts, but to our knowledge, no study so far
has classified post-harvest wheel ruts automatically using only
RGB images. Nevalainen et al. (2017) have reported an accuracy
of 65 per cent in identifying wheel ruts with a depth >20 cm
using an image matching-based digital terrain model, which
was sufficient for post-harvest quality assurance. Other studies
aimed at detecting linear structures in remotely sensed data
are comparable only to a limited degree. For example, Paul et
al. (2021) have used LiDAR data in combination with a machine
and deep learning classification algorithms to identify ditches
in peatland forests with promising results. In the case of the
harvested forest as a semi-natural landscape, the interference in
the images in terms of wood logs, branches and other harvest
residues increases. This makes detecting wheel ruts challeng-
ing and different from detecting features from relatively clearly
structured human-made surfaces such as pavements and roads.
The latter have often been classified with very high accuracies.
For example, Bayoudh et al. (2021) used a pre-trained network
and obtained an overall accuracy of 99 per cent for detecting
roads using RGB imagery from the benchmarked datasets. Zhang
et al. (2018) used ResNet+UNet for road extraction with 90 per

cent accuracy using aerial images. Similarly, Kim et al. (2021)
and Ali et al. (2021) have used instance classification to detect
cracks in surfaces like pavements with an accuracy of over 95
per cent. Giben et al. (2015) detected railway tracks with 93 per
cent accuracy by utilizing the information from the surroundings
such as ballast, wood, concrete, lubricator, rail and fastener.
In their study, such context information of objects frequently
occurring along railway tracks helped identify railway tracks with
high accuracy. Such regular or uniform surrounding information
is difficult to find in harvested forests which complicates the
classification problem and may hence also explain the lower
accuracies obtained in our study. A visual examination of the
prediction maps showed that the presence of logs, branches, har-
vest residues and shadows hampered the correct identification
of wheel ruts since these natural objects intersected and partly
covered the wheel ruts and hence increased the variability of how
a wheel rut can look like in the image.

In our study, the applied post-processing steps improved
the CNN results. Due to the area-opening technique, spurious
regions were removed, decreasing FN and FP for wheel ruts. The
next step, erosion of the wheel ruts, made the wheel ruts more
defined, increasing the TN for the unaffected area and thus OA.

In this study, the light wheel ruts, representing 63.6 per cent
of annotated wheel ruts, were mostly shallow and visually similar
to the unaffected area and also with less clear textural features,
resulting in poorer detection accuracy. At the same time, light
wheel ruts pose little harm to the soil, and therefore, a lower
detection probability in this class is less concerning (Heppelmann
etal., 2022). The severe wheel ruts generally have reduced water
drainage functions and considerable soil displacement, making

706

220z Jaquieoa 90 uo 1sanb Aq 082/299/869/G/S6/810111e/Ans810)/Ww00 dno"olwapeoe//:sdiy Wol) papeojumMo(]



Mapping wheel-ruts from timber harvesting operations

(b)

(d

Figure 6 Examples of wheel ruts in site S for different severity classes
(a) light, (b) moderate, (c) severe, (d) combination of light and severe.
Left column: drone images, right column: drone images overlaid with
detected wheel rut after post-processing (pink). Row (d) is an example
of an erroneous classification where parts of light wheel ruts were not
detected.

them unique and identifiable. We found that despite the severe
class representing only 11.8 per cent of the total length of the
annotated wheel ruts, it was the one detected with the highest
accuracy. Even though severe ruts often represent a small portion
of the area in a clear cut, they are key in determining the envi-
ronmental performance of harvest operations for certification
purposes. In this sense, our results are encouraging as they show
that the models work best for the most important severity class.

Recommendations and future work

A preliminary analysis (summarized in Appendix A2, Table 5)
showed that, on average, the F1 score was improved by 5 per
cent, and testing OA by 10 per cent when images with constant
image extent in metres (20 m) were used, i.e. the approach
described in the Methods Section, as compared to constant pixel
size.

The fact that the variations in spatial resolution of the drone
imagery did not have a notable effect on the accuracy of
the predictions was encouraging as it opens up possibilities
to segment wheel-ruts from higher altitudes and thus more
efficiently. The procedure to clip the image tiles based on their
spatial coverage (20 x 20 m) followed by resampling to the same
pixel resolution made the contextual information uniform across
the sites irrespective of the original spatial resolution of the
imagery. Therefore, we recommend keeping a constant image
size in terms of image extent (in metres) while training the DL
model. This enhances the ability of the model to learn the wheel
rut pattern across imagery from multiple data sources. Also,
two types of sensors were used to capture the drone images;
namely, p4pro and p2GoPro, with differences in the technical
specifications (e.g. shutter mechanism, sensor size, focal length),
and it was seen that the proposed DL model was also robust
and applicable across the different sensors regardless of their
different RGB colour profile (A5) and sensor specifications. Future
development of the proposed method should aim at retraining
the existing model with additional annotated images covering a
broader spectrum of image acquisition parameters (i.e. higher
altitudes) and drone sensors (i.e. including newer cameras),
potentially leading to models applicable also to traditional aerial
photography or even very-high-resolution satellite imagery.
Further work should also aim at generalizing the proposed model
to a broader range of seasonal, illumination and atmospherical
conditions, thus ensuring its applicability with any new drone
acquisition.

The results achieved so far are promising and imply that,
due to the usage of transfer learning, the proposed approach
worked well with ~75 per cent of the whole training dataset,
thus reducing the need for extensive data annotation campaigns.
This is particularly helpful when working in a new area with non-
annotated images, which is often the case in practical appli-
cations. Drone data acquisition could thus become an integral
part of the harvest documentation in order to comply with cer-
tification schemes or statutory provisions. Corresponding maps
may help to guide post-harvest restoration of the soil. Since
the proposed methodology can be used to detect any kind of
linear wheel rut-like features, it may be possible to extend it to
find disturbances, for example, in conservation sites. Norwegian
nature legislation, for example, restricts motorized traffic outside
marked trails which is, however, an increasing problem in the
open landscape of the Norwegian mountains with low bush
vegetation. An application of our method in this context could
map the affected area as a first step in the management of this
type of nature use.

Conclusion

Based on the results obtained, the following conclusions were
drawn:

1. Drone-based photogrammetry and deep learning are valu-
able techniques for detecting the presence of wheel
ruts.

2. Severe wheel ruts were most accurately detected due to their
prominence in appearance compared to light wheel ruts that
are more similar to the surroundings.
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Figure 7 Examples for the site with the highest model accuracy (F1 score = 0.84, g, b) and the lowest model accuracy (F1 score = 0.69, ¢, d). Site
O with (a) annotated severity labels (L =light, M=medium, S=severe) and (b) predicted wheel ruts; Site J with (c) annotated severity labels and (d)

predicted wheel ruts.

3. The proposed model is robust and can be used to detect
wheel ruts from multiple sensors captured at different
times.

The application of the proposed method can provide an
efficient avenue for monitoring and mapping the environmental
impact of harvest operations which in turn may lead to
an improved overall environmental performance of harvest
operations with varying acquisition characteristics.

Supplementary data

Supplementary data are available at Forestry online.

Data availability

Data and programming code can be accessed upon publication
of the article via https://github.com/SmartForest-no/wheelRuts_
semanticSegmentation. The final model trained with all 20 sites

and programming code is openly available (Bhatnagar et al.,
2021).
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